Wednesday, 27 February 2019

My Plans for Physics

Mechanics
Classical Mechanics II
Electricity and Magnetism
Relativity
Waves and Oscillations
Electromagnetism 2(Electrodynamics)
General Relativity
Quantum Mechanics I
Quantum Mechanics II
Quantum Mechanics III
Quantum Theory
Quantum Field Theory I
Quantum Field Theory II
Quantum Field Theory III
Effective Field Theory; Strong Interactions (Quantum Chromodynamics)
String Theory



Monday, 25 February 2019

Way to choose books for a particular Course

MIT ocw books
Ucla Books

Modern Algebra

Algebra: Michael,Artin

My plan for Undergraduate:

Semester 2:
18.01: Calculus I                                                     (PreCalculus skills)
18.02: Calculus II                                                    (18.01)
18.03: Differential Equations:                             (18.02)
Summer:

18.700: Linear Algebra                                           (18.02)
18.703: Modern Algebra                                        (18.02)
18.100A: Real Analysis                                           (18.02)
18.034: Hons Differential Equations                  (18.02)
(Do all above at the same time)
18.950: Differential Geometry                              (18.700,18.100A)

Semester 3:
18.112: Functions of a Complex Variable                 (18.700,18.100A)
18.900: Geometry and Topology in the plane         (18.700,18.100A)
18.950: Algebra I                                                              (18.100A)
18.101: Analysis and manifolds                                    (18.700,18.100A)
18.102: Introduction to Functional Analysis            (18.700,18.100A)
18.901: Introduction to Topology                                (18.100A)
(Do all above at the same time)

Semester 4:
18.755: Introduction to Lie Groups                             (18.700,18.100A)
18.702: Algebra II                                                             (18.701)
18.904: Seminars in Topology                                       (18.901)
18.952: Theory of Differential Forms:                        (18.700,18.101)
18.116: Riemann Surfaces                                             (18.112)
18.155: Differential analysis I                                       (18.102)
(Do all above at the same time)

Summer:
18.994: Seminars in geometry                                      (18.700,18.100A)
18.905: Algebraic Topology I                                         (18.901,18.701)
18.965: Geometry of Manifolds I                                  (18.101,18.950)
18.705: Commutative Algebra                                      (18.702)
18.782: Introduction to Arithmetic Geometry         (18.702)

Semester 5:
18.715: Introduction to Representation Theory      (18.702 or 18.703)
18.721: Introduction to Algebraic Geometry             (18.702,18.901)
18.906: Algebraic Topology II                                          (18.905)

Semester 6:
18.966: Geometry of Manifolds II                                   (18.965)
Advanced Algebraic Geometry                                        (18.721)

Summer:
Research Paper Published



Real Analysis:

Resources for Real Analysis:
Analysis Terence Tao Vol.I & Vol.II
Principles of Mathematical Analysis (Walter Rudin)
K.A. Ross, Elementary Analysis: The Theory of Calculus, 2nd Ed.  
Introduction to Analysis: Arthur Mattuck
(https://www.math.ucla.edu/ugrad/courses/math/131A)
More Advanced Texts: Real Analysis, Elias.M.Stein (see http://www.math.ucla.edu/~tao/245a.1.10f/)
(Prerequisites: Math 121: Introduction to Topology, 131A: Real Analysis, 131B: Real Analysis)

My plan for this semester 2:

March   Introduction to Calculus and Analysis Vol.I Courant, Fritz,John
April     Introduction to Calculus and Analysis Vol.II Courant, Fritz,John
May      Differential Equations